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Abstract

We begin by explaining the background, made up by module theory and a little K-

theory. Then we present the Cartan matrix and the Cartan-Brauer triangle in some

detail and try to elucidate these concepts by simple examples. Then we state Schneider’s

result: if R is a complete discrete valution ring which has characteristic 0 and has p

in its radical, and H is a finite cocommutative Hopf algebra over R, then the Cartan

matrix is nonsingular, and we explain the important consequence in Hopf Galois theory:

two projective H-modules are isomorphic as soon as they become isomorphic after base

change to the quotient field of R.

0 The rings and modules in play

Let R be a complete discrete valuation ring, rad(R) its radical, k = R/rad(R) its residue field.

We always suppose that R has characteristic 0 and that k has characteristic p. Let K be the

field of fractions of R. Then (R,K, k) is a so-called modular triple. Let B be an R-algebra,

finitely generated and projective as an R-module, and let A be a finite-dimensional k-algebra.

Remark:

1) The objects A and k will often be studied in their own right, but:

2) Whenever B and R are present, it will be understood that A = k ⊗R B = B/rad(R)B.

In this situation, we call B a lift of A. The algebras B and A may be Hopf algebras over

the appropriate rings.

Example: For any finite group D, one can take the data R = Zp, k = Fp, B = Zp[D] and

A = Fp[D].

1 Some module theory

All of the modules that we consider are finitely generated. Let S ∈ {k,A,R,B}.
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A projective cover of a (left) S-module M is a projective (left) S-module P along with a

surjective S-module homomorphism π : P � M such that ker (π) ⊂ rad(P) = rad(S)P . Pro-

jective covers exist, and are unique up to (non-unique) isomorphism.

Examples:

1) For any x ∈ rad(S), the projection π : S � S/Sx is a projective cover.

2) If G is a finite p-group and S = Fp[G], the augmentation map ε : S � Fp is a projective

cover.

Now look at the k-algebra A. It is semisimple if and only if all A-modules are projective.

In full generality, there are only a finite number of simple A-modules (up to isomorphism

of course), say F1, . . . , Fr, and a finite number of indecomposable projective A-modules, say

U1, . . . , Ur. Note that there are the same number of each:

Proposition 1. There is a bijection {Fi} ↔ {Ui}. In one direction, a simple A-module Fi

is sent to its projective cover over A. In the other, an indecomposable A-module Ui is sent to

Ui/rad(A)Ui.

Moreover, one can say that each Ui occurs as an ideal in A, and as a left A-module, A is the

direct sum of indecomposable projectives (possibly with repetitions).

Now enters B (recall that in this situation A = k ⊗R B).

Proposition 2. Let the modules Ui be defined as above, and let Pi denote the indecomposable

projective B-modules. Then there is a bijection {Pi} ↔ {Ui}. In one direction, an indecompos-

able B-module Pi is sent to k ⊗R Pi. In the other, an indecomposable A-module Ui is sent to

the projective cover of Ui over B.

The proof uses lifting idempotents against a surjective homomorphism with topologically

nilpotent kernel.

2 Review of K0 and G0

Let S ∈ {k,R,A,B}. Recall that

K0(S) = {projective S-modules}
/

short exact sequences,

(a short exact sequence 0← P ′ → P → P ′′ → 0 gives the relation [P ] = [P ′] + [P ′′]), and

G0(S) = {S-modules of finite length}
/

short exact sequences.

If S is artinian (for example, if S = A) then G0(S) is a free Z-module on [F1], . . . , [Fr] (the

classes of the simple A-modules). If S = A (respectively, S = B) then K0(S) is a free Z-

module on [U1], . . . , [Ur] (respectively, on [P1], . . . , [Pr]). Therefore we have isomorphisms of

abelian groups
K0(B) ∼= K0(A) ∼= G0(A),

[Pi] 7→ [Ui] 7→ [Fi].
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3 The Cartan matrix

Define car : K0(A)→ G0(A) by [P ] 7→ [P ] for each A-module P . Note that this is not the same

map as the one appearing between these two groups at the end of the previous section. More

precisely: Let C = (cij) be the representing matrix for car with respect to the Z-bases {[Ui]}
and {[Fj]} of K0(A) and G0(A) respectively. Then cij tells us how often the simple module Fj

occurs in a composition series for the indecomposable projective module Ui.

Examples:

1) If A is semisimple then Ui = Fi for all i, so C is the identity matrix.

2) If A is commutative then A =
r⊕

i=1

Ai where each Ai is a local ring with residue field ki.

In this case we have Ui = 0× · · · × Ai × · · · × 0 and Fi = 0× · · · × ki × · · · × 0, so C is

diagonal, with cii equal to the length of Ai.

3) Let A = F2[S3], where S3 = 〈σ, τ | σ3 = τ 2 = 1, τσ = σ2τ〉. Then

A = U1 × U2,

where U1 =
F2[τ ]

(τ 2 − 1)
is an indecomposable, but not simple, A-module, and U2 is a simple

A-module. This decomposition is induced from the decomposition

F2[σ] = F2 ⊕
F2[σ]

(σ2 + σ + 1)
.

The simple A-modules are F1 = F2 (with trivial action) and F2 = U2 (appearing in the

decomposition above). In this case we find that that

C =

(
2 0

0 1

)
.

4) [Schneider]. Let k have characteristic 2, and let A = k[x, e] with x2 = 0, e2 = e and

[x, e] = x. It turns out that dimk(A) = 4, rad(A) = Ax, and

A =
A

rad(A)
=

k[e]

(e2 − e)
= k × k.

There are two simple A-modules (each a copy of k with zero action of x): F1, which is

annihilated by e, and F2, which is annihilated by 1− e. The indecomposable projectives

are U1 = Ae and U2 = A(1− e). We have a composition series

0 ⊂ Axe ⊂ Ae.

The quotient
Ae

Axe
is annihilated by 1 − e and x, so it is isomorphic to F2. In Axe we

have exe = (xe + x)e = x(e − 1)e = 0, so Axe is isomorphic to F1. Continuing in this
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way, we find that

C =

(
1 1

1 1

)
,

which is singular! (The algebra A in this example is in fact a Hopf algebra, corresponding

to the group scheme α2 o µ2.)

4 The Cartan-Brauer Triangle

There is a commutative triangle:

K0(K ⊗R B)

dec

&&
K0(B)

K⊗R−

OO

G0(A)

K0(A)

lifting

OO

car

88

Here the map dec is the so-called decomposition homomorphism.

(Added after the conference) The definition of dec goes as follows. Given a module M over

K⊗RB, pick a finitely generated R-submodule L ⊂M spanning M over K. (Such submodules

L are called lattices in M .) Define (!) dec(M) = [k⊗R L]. The catch is of course that it is not

clear whether this is independent of the choice of lattice L. But this can indeed be proved, by

a pretty argument which is not too complicated. As soon as one knows that dec is well defined,

it is easy to prove that it is a homomorphism and that the diagram commutes.

Proposition 3. If C is nonsingular1 then the following conditional statement is true:

If P, P ′ are projective over B and K ⊗R P ∼= K ⊗R P
′ as K ⊗R B-modules, then P ∼= P ′.

Proof. We are assuming that car is injective; and then the commutative triangle shows that the

map K ⊗R − is also injective. Hence K ⊗R P ∼= K ⊗R P
′ implies that the classes of P and P ′

in K0(B) are the same. Hence P and P ′ are stably isomorphic over B. Under our assumptions

the Krull dimension of B is 1, so stable isomorphism implies isomorphism.

The goal of the rest of the talk is now to show that C is nonsingular in the case that B is an

R-Hopf algebra.

5 Schneider’s result

Theorem 4. If B is a cocommutative R-Hopf algebra (finitely generated, projective over R)

and A = k ⊗R B, then the Cartan matrix C = CA is nonsingular.

1that is, if the integer detC is not zero; we’re not saying anything about invertibility
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Remark: Schneider also proves that C is symmetric, and that detC is a power of the charac-

teristic of k if k is a finite field; but we will not deal with these extra statements.

Recall that in example (4) of section 3 we had C =

(
1 1

1 1

)
. Therefore the corresponding

k-algebra A does not come from any Hopf algebra B over R: in Schneider’s terminology, A is

not liftable.

Plan of the Proof:

1) If B is commutative, then we’re done. Indeed, since R is complete, B is a finite product

of commutative local rings, and then, as said before, C is a nonsingular diagonal matrix.

2) Show the statement for H an order in K[D], the group algebra of a finite group D. This

part is modelled on the pre-existing proof in the case that H = R[D]. In that case,

suppose that x ∈ K0(k[D]) is in the kernel of car and lies in⋃
C≤D

C cyclic

indD
CK0(k[C])

(note that each k[C] is commutative). Then one gets that x is zero, using some com-

mutative diagrams and the trivial circumstance that group rings of cyclic groups are

commutative (see part 1)). Now use Frobenius functors: these allow us to replace
⋃

with
∑

. This sum has finite index in K0(k[D]) by Brauer’s Induction Theorem. Since

K0(k[D]) is Z-torsion free, we have ker(car) = 0.

3) Reduce the general case to the case that K⊗RH is a group ring, by a fairly straightforward

descent argument.
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